

ROBUST OPTICAL PERFORMANCE EASY CLEANING

CABLE SPECIFICATIONS

- A pre-cabled solution ideal for:
- Faultless optic performance
- Indoor, outdoor and extreme applications
- Up to IP67 (unmated) / IP68 (mated)
- Easy field cleaning

THE RELIABLE EXPERT

INTRODUCTION

The Fischer FiberOptic Series offers the best quality and stability needed for an optical link, combined with easy mating and easy field cleaning. It performs perfectly in harsh and extreme environments and have a high ingress protection of IP68 when mated, and IP67 unmated. This rugged push-pull fiber optic connector, for both indoor and outdoor applications, **can also be available** pre-cabled for maximum performance and time saving.

The Fischer FiberOptic Series is available in two versions:

FiberOptic FO1, FO2 & FO4

A rugged connector with one (FO1), two (FO2) or four (FO4) fibers

FiberOptic Hybrid FOH

A rugged hybrid connector with four channels, available pre-cabled with two fiber channels and two electrical contacts.

TABLE OF CONTENTS

Introduction	
Cable availability	

INDOOR OUTDOOR RANGE

OCC cables		
	1 Channel, indoor applications, 900µm cable diameter	
	1 Channel, indoor applications, 2.0mm cable diameter. 8 1 Channel, outdoor applications, 2.9mm cable diameter. 11	
	2 Channel cables	
	4 Channel cables	
LEONI cables		
	2 Channel cables	
LEONI Hybrid 2 ele	ectrical + 2 fibers	
	2 electrical, 2 fibers, 1 ground wire24	
RODENT PROOF RAI	NGE	
LEONI cables		
	2 Channel cables	
METAL ARMORED R	ANGE	
KAIPHONE cables		
	1 Channel cables	
BRUGG cables		
	4 Channel cables	
FIBER SPECIFICATIO	DNS	
LEONI fiber		
	Singlemode G657.A1	
	Multimode 50µm OM3	
BRUGG fiber		
	Singlemode G657.A1	
	Multimode 50µm OM3	

CABLE AVAILABILITY

CHOOSE YOUR CABLE

		INDOOR/OUTDOOR			
Supplier Brand	Fiber Count	SM 9/125 G.657.A1	MM 50/125 OM3	MM 62.5/125 OM1+	
	1				
000	2				
	4				
LEONI	2				
LEONI	4				
LEONI	Hybrid 2+2				

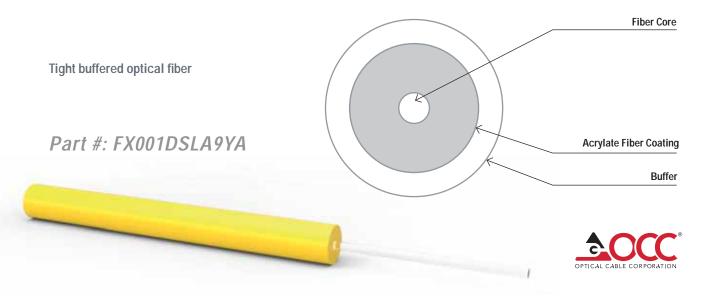
		RODENT PROOF		
Supplier Brand	Fiber Count	SM 9/125 G.657.1.A1	MM50/125 OM3	MM 62.5/125 OM1+
LEONI	2			
Glass Fiber	4			

		METAL ARMORED		
Supplier Brand	Fiber Count	SM 9/125 G.657.1.A1	MM50/125 OM3	MM 62.5/125 OM1+
KAIPHONE Metal Armored	1			
BRUGG	2			
Metal Armored	4			

Available

Available under special lead time - please contact your local sales departement for details

OUTDOOR CABLE FEATURES


Features	OCC		LEONI
Available for	FO1 FO2, FO4		FO2, FO4
Best for	Premium a	pplication	High load application
	 Overall ruggedness Easy deployment High end tactical cable		 High load resistance Easy deployment High end tactical cable
Technology	5		- Tight buffered fibers - Aramid yarn - PUR jacket
Outer diameter	2.9 mm	5.5 mm	5.5 mm
Weight	8 kg/km	27 kg/km	28 kg/km
Operating tensile load	300 N 600 N		1500 N
Crush resistance	500 N/cm 1800 N/cm		800 N/cm
Min. bending radius	1.5 cm 3.3 cm		5.5 cm
Operating temperature	-40°C to +85°C	-40°C to +85°C	-55°C to +85°C

Features	LEONI	KAIPHONE	BRUGG
Available for	FO2, FO4	FO1	FO2, FO4
Best for	Rodent proof	Metal armored	Metal armored
	 Semi-static applications Easy deployment Dielectric rodent protection High flexibility 	 High rodent protection Static & deployable applications Ultra-light armored technology Sensing applications 	 High rodent protection Static & deployable applications Self supporting applications Ultra-light armored technology Direct burial
Technology	- Tight buffered fibers - Aramid yarn / - PUR double skin jacket	 Stainless steel loose tube Aramid yarn LDPE jacket 	Stainless steel loose tubeStainless steel yarnPA Jacket
Outer diameter	9.4 mm	3.0 mm	3.8 mm
Weight	105 kg/km	18 kg/km	25 kg/km
Operating tensile load	2000 N	300 N	900 N
Crush resistance	800 N/cm	300 N/cm	800 N/cm
Min. bending radius	9.4 cm	3.0 cm	5.7 cm
Operating temperature	-55°C to +85°C	-40°C to + 85°C	-40°C to + 70°C

Please consult our Cable Specifications for detailed information.

OCC 1 CHANNEL - 900µm cable diameter

Laser Ultra-Fox[™] Fiber Performance

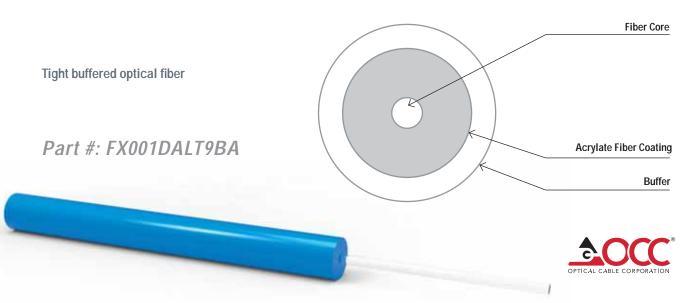
Fiber Code	SLA
Industry Standard Designation	Bend Tolerant
	Single Mode
	ITU-T G.657.A1
	ITU-T G.652.D
Core/Cladding Diameter (µm)	9/125
Wavelength (nm)	1310/1550
Maximum Cabled Attenuation (dB/km)	0.5/0.5
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Zero Dispersion Slope (ps/nm2-km)	0.092
Proof Test Level (kpsi)	100

Mechanical and Environmental

Operating Temperature	-40°C to +85°C
Storage Temperature	-50°C to +85°C
Flame Retardancy	UL 94 V-0

Cable Characteristics

Buffer Color	Yellow	
Buffer Material	Indoor/Outdoor PVC	
Buffer Fiber Weight	0.9 kg/km (0.6 lbs/1000')	


Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	15 N	5 N
Min Bend Radius	2 cm	1 cm

OCC 1 CHANNEL - 900µm cable diameter

Laser Ultra-Fox[™] Fiber Performance

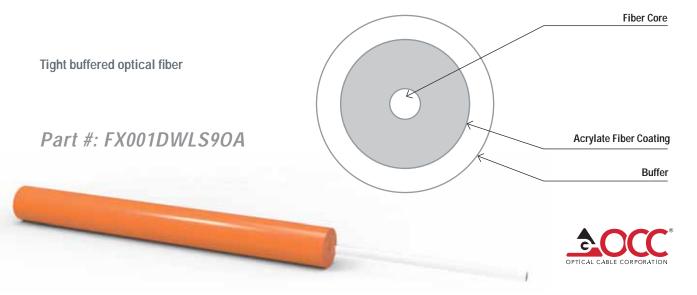
Fiber Code	ALT
Industry Standard Designation	Bend Insensitive OM3 ISO/IEC 11801
Core/Cladding Diameter (µm)	50/125
Wavelength (nm)	850/1310
Gigabit Ethernet Distance (m)	1000/600
10-Gigabit Ethernet Distance (m)	300/300
Maximum Cabled Attenuation (dB/km)	3.0/1.0
Minimum Laser EMB Bandwitch (Mhz-km)	2000/500
Minimum OFL LED Bandwitch (Mhz-km)	1500/500
Primary Coating Diameter (µm)	245
Secondary coating Diameter (µm)	900
Proof Test Level (kpsi)	100

Mechanical and Environmental

Operating Temperature	-40°C to +85°C
Storage Temperature	-50°C to +85°C
Flame Retardancy	UL 94 V-0

Cable Characteristics

Buffer Color	Blue
Buffer Material	Indoor/Outdoor PVC


Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	15 N	5 N
Min Bend Radius	2 cm	1 cm

Fscher

NOTE

OCC 1 CHANNEL - 900µm cable diameter

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	WLS
Industry Standard Designation	OM1
	ISO/IEC 11801
Core/Cladding Diameter (µm)	62.5/125
Numeric Aperture	0.275
Wavelength (nm)	850/1310
Gigabit Ethernet Distance (m)	300/600
10-Gigabit Ethernet Distance (m)	33/300
Maximum Cabled Attenuation (dB/km)	3.5/1.5
Minimum Laser EMB Bandwitch (Mhz-km)	220/500
Minimum OFL LED Bandwitch (Mhz-km)	200/500
Primary Coating Diameter (µm)	245
Proof Test Level (kpsi)	100

Mechanical and Environmental

Operating Temperature	-40°C to +85°C
Storage Temperature	-50°C to +85°C
Flame Retardancy	UL 94 V-0

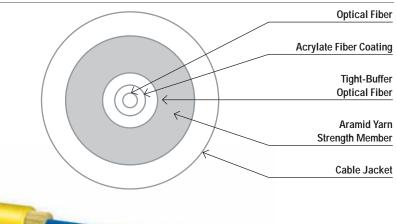
Cable Characteristics

Buffer Color	Orange
Buffer Material	Indoor/Outdoor PVC

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	15 N	5 N
Min Bend Radius	2 cm	1 cm

Fscher


NOTE

OCC 1 CHANNEL - 2.0mm cable diameter

A-Series Micro Assembly LSZH Cables (2.0mm & 1.6mm)

Part #: AE001ZSLA9YZ

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	SLA
Industry Standard Designation	Low Water Peak
	Single Mode
	ITU-T G.657.A1 and
	ITU-T G.652.D
Core/Cladding Diameter (µm)	9/125
Wavelength (nm)	1310/1550
Maximum Cabled Attenuation (dB/km)	0.5/0.5
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Zero Dispersion Slope (ps/nm2-km)	0.092
Proof Test Level (kpsi)	100

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	300 N (67 lbs)	160 N (36 lbs)
Min Bend Radius	3.8 cm (1.5 in)	2.5 cm (1.0 in)

Mechanical and Environmental

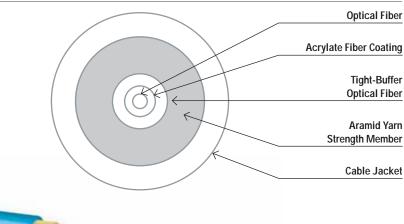
Impact Resistance EIA/TIA-455-25A	200 Impacts	
Crush Resistance TIA/EIA-455-41A	500 N/cm	
Operating Temperature	-20°C to +70°C	
Storage Temperature	-40°C to +70°C	
Installation Temperature		
(actual temp. of cable)	0°C to +60°C	

Cable Characteristics

Jacket Color	Yellow	
Jacket Material	Low Smoke Zero Halogen	
Buffer Material	Hard Elastomeric	
Cable Weight	5 kg/km (3 lbs/1000')	
Cable Diameter	2.0 mm (0.08 in)	

- Suitable for general purpose indoor use, such as routing connections in patching systems.
- Compatible with all standard fiber optic connectors designed for small form-factor simplex and duplex connectors such as MY-RJ and LC connectors.
- High performance tight-buffered coating on each optical fiber for environmental and mechanical protection.
- Zero-halogen cables (Z jacket) meet the requirements of IEC 60754-2.

NOTE



OCC 1 CHANNEL - 2.0mm cable diameter

A-Series Micro Assembly LSZH Cables (2.0mm & 1.6mm)

Part #: AE001ZABT90Z

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	ABT
Industry Standard Designation	Bend Tolerant Laser
	Optimized OM3
	ISO/IEC 11801
Core/Cladding Diameter (µm)	50/125
Numeric Aperture	0.20
Wavelength (nm)	850/1310
Gigabit Ethernet Distance (m)	1000/600
10-Gigabit Ethernet Distance (m)	300/300
Maximum Cabled Attenuation (dB/km)	3.0/1.0
Minimum Laser EMB Bandwidth (MHz-km)	2000/500
Minimum OFL LED Bandwidth (MHz-km)	1500/500
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Proof Test Level (kpsi)	100

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	300 N (67 lbs)	160 N (36 lbs)
Min Bend Radius	3.8 cm (1.5 in)	2.5 cm (1.0 in)

Mechanical and Environmental

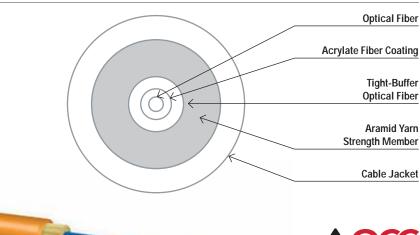
Impact Resistance EIA/TIA-455-25A	200 Impacts
Crush Resistance TIA/EIA-455-41A	500 N/cm
Operating Temperature	-20°C to +70°C
Storage Temperature	-40°C to +70°C
Installation Temperature	
(actual temp. of cable)	0°C to +60°C

Cable Characteristics

Jacket Color	Aqua
Jacket Material	Low Smoke Zero Halogen
Buffer Material	Hard Elastomeric
Cable Weight	5 kg/km (3 lbs/1000')
Cable Diameter	2.0 mm (0.08 in)

- Suitable for general purpose indoor use, such as routing connections in patching systems.
- Compatible with all standard fiber optic connectors designed for small form-factor simplex and duplex connectors such as MY-RJ and LC connectors.
- High performance tight-buffered coating on each optical fiber for environmental and mechanical protection.
- Zero-halogen cables (Z jacket) meet the requirements of IEC 60754-2.

NOTE



OCC 1 CHANNEL - 2.0mm cable diameter

A-Series Micro Assembly LSZH Cables (2.0mm & 1.6mm)

Part #: AE001ZWLX90Z

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	WLX
Industry Standard Designation	0M1+
	ISO/IEC 11801
Core/Cladding Diameter (µm)	62.5/125
Numeric Aperture	0.275
Wavelength (nm)	850/1310
Gigabit Ethernet Distance (m)	500/1000
10-Gigabit Ethernet Distance (m)	33/300
Maximum Cabled Attenuation (dB/km)	3.0/1.0
Minimum Laser EMB Bandwidth (MHz-km)	385/500
Minimum OFL LED Bandwidth (MHz-km)	200/500
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Proof Test Level (kpsi)	100

Installation and Operating Characteristics

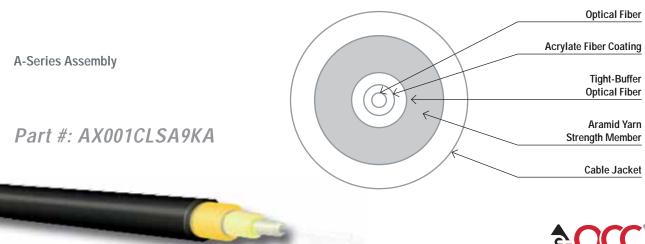
	Installation	Operating
Max Tensile Load	300 N (67 lbs)	160 N (36 lbs)
Min Bend Radius	3.8 cm (1.5 in)	2.5 cm (1.0 in)

Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	200 Impacts	
Crush Resistance TIA/EIA-455-41A	500 N/cm	
Operating Temperature	-20°C to +70°C	
Storage Temperature	-40°C to +70°C	
Installation Temperature		
(actual temp. of cable)	0°C to +60°C	

Cable Characteristics

Jacket Color	Orange	
Jacket Material	Low Smoke Zero Halogen	
Buffer Material	Hard Elastomeric	
Cable Weight	5 kg/km (3 lbs/1000')	
Cable Diameter	2.0 mm (0.08 in)	


- Suitable for general purpose indoor use, such as routing connections in patching systems.
- Compatible with all standard fiber optic connectors designed for small form-factor simplex and duplex connectors such as MY-RJ and LC connectors.
- High performance tight-buffered coating on each optical fiber for environmental and mechanical protection.
- Zero-halogen cables (Z jacket) meet the requirements of IEC 60754-2.

NOTE

OCC 1 CHANNEL - 2.9mm cable diameter

Laser Ultra-Fox[™] Fiber Performance

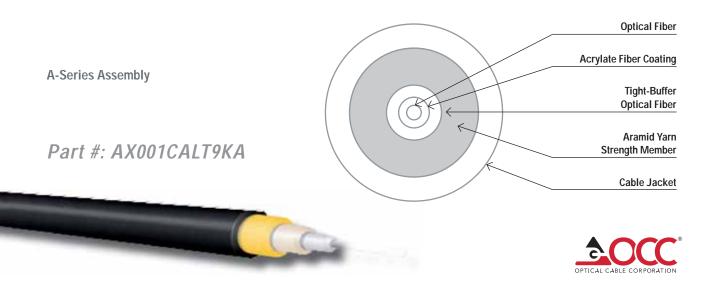
Fiber Code	SLA
Industry Standard Designation	Bend Tolerant
	Single Mode
	ITU-T G.657.A1 and
	ITU-T G.652.D
Core/Cladding Diameter (µm)	9/125
Wavelength (nm)	1310/1550
Maximum Cabled Attenuation (dB/km)	0.5/0.5
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Zero Dispersion Slope (ps/nm2-km)	0.092
Proof Test Level (kpsi)	100

Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	750 Impacts	
Crush Resistance TIA/EIA-455-41A	500 N/cm	
Operating Temperature	-40 C to +85 C	
Storage Temperature	-55 C to +85 C	
Installation Temperature		
(actual temp. of cable)	-10 C to +60 C	

Cable Characteristics

Jacket Color	Black	
Jacket Material	Polyurethane	
Buffer Material	Hard Elastomeric	
Cable Weight	8.0 kg/km (5 lbs1000')	
Cable Diameter	2.9 mm (0.11 in)	


Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	500 N (110 lbs)	300 N (70 lbs)
Min Bend Radius	2.9 cm (1.1 in)	1.5 cm (0.6 in)

NOTE

OCC 1 CHANNEL - 2.9mm cable diameter

Laser Ultra-Fox[™] Fiber Performance

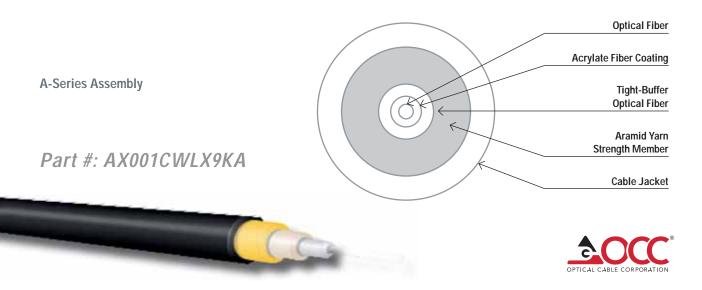
Fiber Code	ALT
Industry Standard Designation	Laser Optimized
	OM3
	ISO/IEC 11801
Core/Cladding Diameter (µm)	50/125
Numeric Aperture	0.20
Wavelength (nm)	850/1310
Gigabit Ethernet Distance (m)	1000/600
10-Gigabit Ethernet Distance (m)	300/300
Maximum Cabled Attenuation (dB/km)	3.0/1.0
Minimum Laser EMB Bandwidth (MHz-km)	2000/500
Minimum OFL LED Bandwidth (MHz-km)	1500/500
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Proof Test Level (kpsi)	100

Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	750 Impacts
Crush Resistance TIA/EIA-455-41A	500 N/cm
Operating Temperature	-40 C to +85 C
Storage Temperature	-55 C to +85 C
Installation Temperature	
(actual temp. of cable)	-10 C to +60 C

Cable Characteristics

Jacket Color	Black
Jacket Material	Polyurethane
Buffer Material	PVC
Cable Weight	8.0 kg/km (5 lbs1000')
Cable Diameter	2.9 mm (0.11 in)


Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	500 N (110 lbs)	300 N (70 lbs)
Min Bend Radius	2.9 cm (1.1 in)	1.5 cm (0.6 in)

Scher

NOTE

OCC 1 CHANNEL - 2.9mm cable diameter

Laser Ultra-Fox[™] Fiber Performance

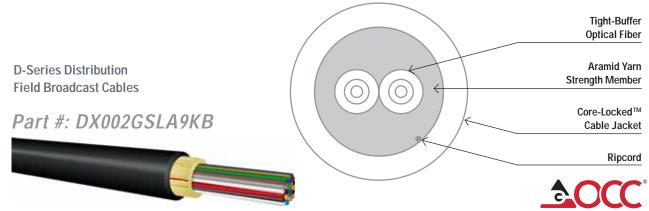
Fiber Code	WLX
Industry Standard Designation	OM1+ ISO/IEC 11801
Core/Cladding Diameter (µm)	62.5/125
Numeric Aperture	0.275
Wavelength (nm)	850/1310
Gigabit Ethernet Distance (m)	500/1000
10-Gigabit Ethernet Distance (m)	33/300
Maximum Cabled Attenuation (dB/km)	3.5/1.5
Minimum Laser EMB Bandwidth (MHz-km)	385/500
Minimum OFL LED Bandwidth (MHz-km)	200/500
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Proof Test Level (kpsi)	100

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	500 N (110 lbs)	300 N (70 lbs)
Min Bend Radius	2.9 cm (1.1 in)	1.5 cm (0.6 in)

Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	750 Impacts	
Crush Resistance TIA/EIA-455-41A	500 N/cm	
Operating Temperature	-40 C to +85 C	
Storage Temperature	-55 C to +85 C	
Installation Temperature		
(actual temp. of cable)	-10 C to +60 C	


Cable Characteristics

Jacket Color	Black	
Jacket Material	Polyurethane	
Buffer Material	PVC	
Cable Weight	8.0 kg/km (5 lbs1000')	
Cable Diameter	2.9 mm (0.11 in)	

NOTE

OCC 2 CHANNEL

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	SLA
Industry Standard Designation	Low Water Peak
	Single Mode
	ITU-T G.657.A1 and
	ITU-T G.652.D
Core/Cladding Diameter (µm)	9/125
Wavelength (nm)	1310/1550
Maximum Cabled Attenuation (dB/km)	0.5/0.5
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Zero Dispersion Slope (ps/nm2-km)	0.092
Proof Test Level (kpsi)	100

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	1,800 N (400 lbs)	600 N (130 lbs)
Min Bend Radius	5.0 cm (2.0 in)	2.5 cm (1.0 in)

Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	1,500 Impacts
Crush Resistance TIA/EIA-455-41A	1,800 N/cm
Operating Temperature	-40°C to +85°C
Storage Temperature	-70°C to +85°C

Cable Characteristics

Jacket Color	Black
Jacket Material	Low Smoke Zero Halogen
Buffer Material	Polyurethane Hard Elastomeric
Cable Weight	21 kg/km (14 lbs/1000')
Cable Diameter	5.0 mm (0.20 in)

- Deployable cable that is ideal for use in harsh environments where deployment and retrieval for reuse are required.
- Extremely strong, lightweight, rugged, survivable tight-buffered cables are designed for broadcast field use and commercial applications.
- Compact, round cable design for ease of transportation and deployment.
- Core-locked jacket for improved mechanical performance.
- Designed for use in adverse environments where reduced size and weight are important.
- Helically stranded cable core for flexibility, survival in difficult pulls, and exceptional mechanical protection for the optical fibers.
- Cables have been tested and are in use in broadcast data communications applications worldwide.
- Can be used outdoors for temporary deployment directly on the ground in all terrains, including severe environments.
- Suitable for industrial, mining and petrochemical environments; chemical resistant.
- Crush resistant and resilient with a thick layer of aramid strength members.
- Polyurethane jacketed for abrasion, cut and chemical resistance.
- Most commonly used with ruggedized multiway military tactical field connectors, for maximum connector retention (400lbs.).
- Tactical Polyurethane (C) outer jacket materials is standard; Flame-Retardant Tactical (V) and Low-Smoke Zero-Halogen (G) outer jacket materials are available.

NOTE

OCC 2 CHANNEL

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	ABT
Industry Standard Designation	Bend Tolerant Laser Optimized OM3 ISO/IEC 11801
Core/Cladding Diameter (µm)	50/125
Numeric Aperture	0.20
Wavelength (nm)	850/1310
Gigabit Ethernet Distance (m)	1000/600
10-Gigabit Ethernet Distance (m)	300/300
Maximum Cabled Attenuation (dB/km) 3.0/1.0
Minimum Laser EMB Bandwidth (MH	z-km) 2000/500
Minimum OFL LED Bandwidth (MHz-k	m) 1500/500
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Proof Test Level (kpsi)	100

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	1,800 N (400 lbs)	600 N (130 lbs)
Min Bend Radius	5.0 cm (2.0 in)	2.5 cm (1.0 in)

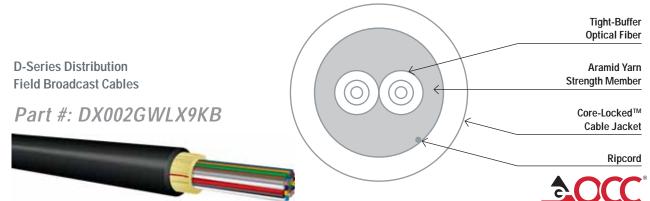
Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	1,500 Impacts
Crush Resistance TIA/EIA-455-41A	1,800 N/cm
Operating Temperature	-40°C to +85°C
Storage Temperature	-70°C to +85°C

Cable Characteristics

Jacket Color	Black
Jacket Material	Low Smoke Zero Halogen Polyurethane
Buffer Material	Hard Elastomeric
Cable Weight	21 kg/km (14 lbs/1000')
Cable Diameter	5.0 mm (0.20 in)

 Deployable cable that is ideal for use in harsh environments where deployment and retrieval for reuse are required.


CABLE CORPORATION

- Extremely strong, lightweight, rugged, survivable tight-buffered cables are designed for broadcast field use and commercial applications.
- Compact, round cable design for ease of transportation and deployment.
- Core-locked jacket for improved mechanical performance.
- Designed for use in adverse environments where reduced size and weight are important.
- Helically stranded cable core for flexibility, survival in difficult pulls, and exceptional mechanical protection for the optical fibers.
- Cables have been tested and are in use in broadcast data communications applications worldwide.
- Can be used outdoors for temporary deployment directly on the ground in all terrains, including severe environments.
- Suitable for industrial, mining and petrochemical environments; chemical resistant.
- Crush resistant and resilient with a thick layer of aramid strength members.
- Polyurethane jacketed for abrasion, cut and chemical resistance.
- Most commonly used with ruggedized multiway military tactical field connectors, for maximum connector retention (400lbs.).
- Tactical Polyurethane (C) outer jacket materials is standard; Flame-Retardant Tactical (V) and Low-Smoke Zero-Halogen (G) outer jacket materials are available.

NOTE

OCC 2 CHANNEL

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	WLX
Industry Standard Designation	0M1+ ISO/IEC 11801
Core/Cladding Diameter (µm)	62.5/125
Numeric Aperture	0.275
Wavelength (nm)	850/1310
Gigabit Ethernet Distance (m)	500/1000
10-Gigabit Ethernet Distance (m)	33/300
Maximum Cabled Attenuation (dB/km)	3.5/1.5
Minimum Laser EMB Bandwidth (MHz-km)	385/500
Minimum OFL LED Bandwidth (MHz-km)	200/500
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Proof Test Level (kpsi)	100

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	1,800 N (400 lbs)	600 N (130 lbs)
Min Bend Radius	5.0 cm (2.0 in)	2.5 cm (1.0 in)

Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	1,500 Impacts
Crush Resistance TIA/EIA-455-41A	1,800 N/cm
Operating Temperature	-40°C to +85°C
Storage Temperature	-70°C to +85°C

Cable Characteristics

Jacket Color	Black
Jacket Material	Low Smoke Zero Halogen Polyurethane
Buffer Material	Hard Elastomeric
Cable Weight	21 kg/km (14 lbs/1000')
Cable Diameter	5.0 mm (0.20 in)

- Deployable cable that is ideal for use in harsh environments where deployment and retrieval for reuse are required.
- Extremely strong, lightweight, rugged, survivable tight-buffered cables are designed for broadcast field use and commercial applications.
- Compact, round cable design for ease of transportation and deployment.
- Core-locked jacket for improved mechanical performance.
- Designed for use in adverse environments where reduced size and weight are important.
- Helically stranded cable core for flexibility, survival in difficult pulls, and exceptional mechanical protection for the optical fibers.
- Cables have been tested and are in use in broadcast data communications applications worldwide.
- Can be used outdoors for temporary deployment directly on the ground in all terrains, including severe environments.
- Suitable for industrial, mining and petrochemical environments; chemical resistant.
- Crush resistant and resilient with a thick layer of aramid strength members.
- Polyurethane jacketed for abrasion, cut and chemical resistance.
- Most commonly used with ruggedized multiway military tactical field connectors, for maximum connector retention (400lbs.).
- Tactical Polyurethane (C) outer jacket materials is standard; Flame-Retardant Tactical (V) and Low-Smoke Zero-Halogen (G) outer jacket materials are available.

NOTE

OCC 4 CHANNEL

D-Series Distribution Field Broadcast Cables

Part #: DX004GSLA9KB

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	SLA
Industry Standard Designation	Low Water Peak
	Single Mode
	ITU-T G.657.A1 and
	ITU-T G.652.D
Core/Cladding Diameter (µm)	9/125
Wavelength (nm)	1310/1550
Maximum Cabled Attenuation (dB/km)	0.5/0.5
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Zero Dispersion Slope (ps/nm2-km)	0.092
Proof Test Level (kpsi)	100

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	1,800 N (400 lbs)	600 N (130 lbs)
Min Bend Radius	5.5 cm (2.2 in)	2.8 cm (1.0 in)

Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	1,500 Impacts
Crush Resistance TIA/EIA-455-41A	1,800 N/cm
Operating Temperature	-40°C to +85°C
Storage Temperature	-70°C to +85°C

Cable Characteristics

Jacket Color	Black
Jacket Material	Low Smoke Zero Halogen Polyurethane
Buffer Material	Hard Elastomeric
Cable Weight	27 kg/km (18 lbs/1000')
Cable Diameter	5.5 mm (0.22 in)

Deployable cable that is ideal for use in harsh environments where deployment and retrieval for reuse are required.

Ripcord

Tight-Buffer

Optical Fiber

Aramid Yarn Strength Member

> Core-Locked[™] Cable Jacket

- Extremely strong, lightweight, rugged, survivable tight-buffered cables are designed for broadcast field use and commercial applications.
- Compact, round cable design for ease of transportation and deployment.

 \bigcirc

- Core-locked jacket for improved mechanical performance.
- Designed for use in adverse environments where reduced size and weight are important.
- Helically stranded cable core for flexibility, survival in difficult pulls, and exceptional mechanical protection for the optical fibers.
- Cables have been tested and are in use in broadcast data communications applications worldwide.
- Can be used outdoors for temporary deployment directly on the ground in all terrains, including severe environments.
- Suitable for industrial, mining and petrochemical environments; chemical resistant.
- Crush resistant and resilient with a thick layer of aramid strength members.
- Polyurethane jacketed for abrasion, cut and chemical resistance.
- Most commonly used with ruggedized multiway military tactical field connectors, for maximum connector retention (400lbs.).
- Tactical Polyurethane (C) outer jacket materials is standard; Flame-Retardant Tactical (V) and Low-Smoke Zero-Halogen (G) outer jacket materials are available.

NOTE

OCC 4 CHANNEL

D-Series Distribution Field Broadcast Cables

Part #: DX004GABT9KB

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	ABT
Industry Standard Designation Laser Optimized OM3,	Bend Tolerant ISO/IEC 11801
Core/Cladding Diameter (µm)	50/125
Numeric Aperture	0.20
Wavelength (nm)	850/1310
Gigabit Ethernet Distance (m)	1000/600
10-Gigabit Ethernet Distance (m)	300/300
Maximum Cabled Attenuation (dB/km)	3.0/1.0
Minimum Laser EMB Bandwidth (MHz-km)	2000/500
Minimum OFL LED Bandwidth (MHz-km)	1500/500
Primary Coating Diameter (µm)	245
Secondary Buffer Diameter (µm)	900
Proof Test Level (kpsi)	100

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	1,800 N (400 lbs)	600 N (130 lbs)
Min Bend Radius	5.5 cm (2.2 in)	2.8 cm (1.1 in)

Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	1,500 Impacts
Crush Resistance TIA/EIA-455-41A	1,800 N/cm
Operating Temperature	-40°C to +85°C
Storage Temperature	-70°C to +85°C

Cable Characteristics

Black
Low Smoke Zero Halogen Polyurethane
Hard Elastomeric
27 kg/km (18 lbs/1000')
5.5 mm (0.22 in)

 Deployable cable that is ideal for use in harsh environments where deployment and retrieval for reuse are required.

Ripcord

Tight-Buffer

Optical Fiber

Aramid Yarn

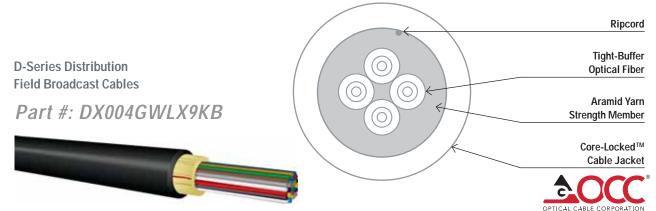
Strength Member

Core-Locked[™] Cable Jacket

OPTICAL CABLE CORPORATION

- Extremely strong, lightweight, rugged, survivable tight-buffered cables are designed for broadcast field use and commercial applications.
- Compact, round cable design for ease of transportation and deployment.

 \cap


 \bigcirc

- Core-locked jacket for improved mechanical performance.
- Designed for use in adverse environments where reduced size and weight are important.
- Helically stranded cable core for flexibility, survival in difficult pulls, and exceptional mechanical protection for the optical fibers.
- Cables have been tested and are in use in broadcast data communications applications worldwide.
- Can be used outdoors for temporary deployment directly on the ground in all terrains, including severe environments.
- Suitable for industrial, mining and petrochemical environments; chemical resistant.
- Crush resistant and resilient with a thick layer of aramid strength members.
- Polyurethane jacketed for abrasion, cut and chemical resistance.
- Most commonly used with ruggedized multiway military tactical field connectors, for maximum connector retention (400lbs.).
- Tactical Polyurethane (C) outer jacket materials is standard; Flame-Retardant Tactical (V) and Low-Smoke Zero-Halogen (G) outer jacket materials are available.

NOTE

OCC 4 CHANNEL

Laser Ultra-Fox[™] Fiber Performance

Fiber Code	WLX	
Industry Standard Designation	0M1+	
	ISO/IEC 11801	
Core/Cladding Diameter (µm)	62.5/125	
Numeric Aperture	0.275	
Wavelength (nm)	850/1310	
Gigabit Ethernet Distance (m)	500/1000	
10-Gigabit Ethernet Distance (m)	33/300	
Maximum Cabled Attenuation (dB/km)	3.5/1.5	
Minimum Laser EMB Bandwidth (MHz-km)	385/500	
Minimum OFL LED Bandwidth (MHz-km)	200/500	
Primary Coating Diameter (µm)	245	
Secondary Buffer Diameter (µm)	900	
Proof Test Level (kpsi)	100	

Installation and Operating Characteristics

	Installation	Operating
Max Tensile Load	1,800 N (400 lbs)	600 N (130 lbs)
Min Bend Radius	5.5 cm (2.5 in)	2.8 cm (1.1 in)

Mechanical and Environmental

Impact Resistance EIA/TIA-455-25A	1,500 Impacts
Crush Resistance TIA/EIA-455-41A	1,800 N/cm
Operating Temperature	-40°C to +85°C
Storage Temperature	-70°C to +85°C

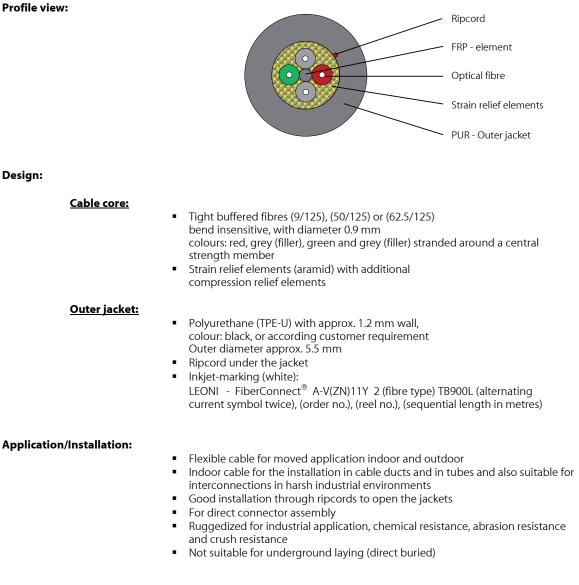
Cable Characteristics

Jacket Color	Black
Jacket Material	Low Smoke Zero Halogen Polyurethane
Buffer Material	Hard Elastomeric
Cable Weight	27 kg/km (18 lbs/1000')
Cable Diameter	5.5 mm (0.22 in)

- Deployable cable that is ideal for use in harsh environments where deployment and retrieval for reuse are required.
- Extremely strong, lightweight, rugged, survivable tight-buffered cables are designed for broadcast field use and commercial applications.
- Compact, round cable design for ease of transportation and deployment.
- Core-locked jacket for improved mechanical performance.
- Designed for use in adverse environments where reduced size and weight are important.
- Helically stranded cable core for flexibility, survival in difficult pulls, and exceptional mechanical protection for the optical fibers.
- Cables have been tested and are in use in broadcast data communications applications worldwide.
- Can be used outdoors for temporary deployment directly on the ground in all terrains, including severe environments.
- Suitable for industrial, mining and petrochemical environments; chemical resistant.
- Crush resistant and resilient with a thick layer of aramid strength members.
- Polyurethane jacketed for abrasion, cut and chemical resistance.
- Most commonly used with ruggedized multiway military tactical field connectors, for maximum connector retention (400lbs.).
- Tactical Polyurethane (C) outer jacket materials is standard; Flame-Retardant Tactical (V) and Low-Smoke Zero-Halogen (G) outer jacket materials are available.

NOTE

LEONI 2 FIBERS



LEONI Part No.: 84951035#

FiberConnect[®] A-V(ZN)11Y 2... TB900L

Profile view:

Design:

Transmission properties:

Transmission characteristics see separate fibre data-sheet

NOTE This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved. This specification is valid as of 08/26/13, however, the specification is subject to change at any time.

LEONI 2 FIBERS

LEONI

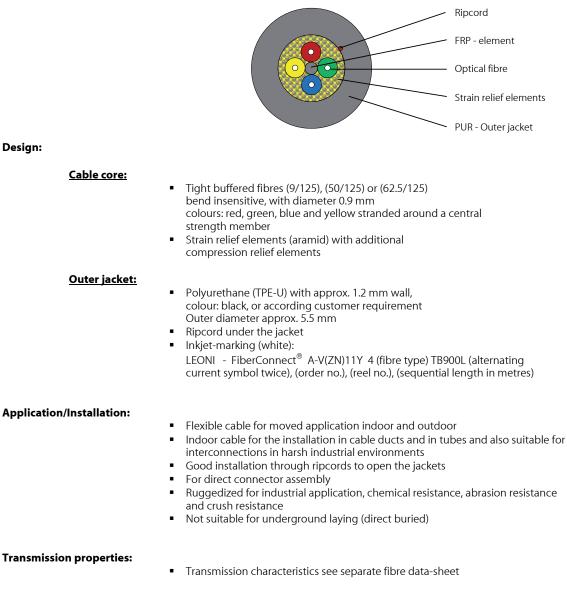
LEONI Part No.: 84951035#

Mechanical properties:		
	 Min. bending radius acc. to IEC 60794-1-2, method E11, procedure 1 static dynamic Max. tensile strength acc. to IEC 60794-1-2, method E1 short-term 	10 x outside diameter 15 x outside diameter max. 2500 N
	 Iong-term Max. crush resistance acc. to IEC 60794-1-2, method E3 	max. 1500 N
	 short-term long-term Impact resistance acc. to IEC 60794-1-2, method F4 	max. 8000 N/dm max. 4000 N/dm 3 Impacts, 1.5 Nm
	 Flexing test acc. IEC 60794-1-2 E8 	(2000 cycles, D = 80 mm, F = 10 N, L (pulling path) = 1.5 m)
	WeightDrag chain test	approx. 28.0 kg/km 1 000 000 cycles
Thermal properties:	Transport and storageInstallationOperation	- 55 ℃ to + 85 ℃ - 20 ℃ to + 60 ℃ - 55 ℃ to + 85 ℃
Fire performance:	Cable is flame-retardantHalogen-free	acc. to IEC 60332-1-2 acc. to IEC 60754-1
	 Acidity of the combustion gases 	acc. to IEC 60754-2
Chemical properties:	 Resistance to oil, petrol, acid and leach UV - resistant 	
Standardisation:		

IEC 60 794-2

NOTE

This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved. This specification is valid as of 08/26/13, however, the specification is subject to change at any time.


LEONI 4 FIBERS

LEONI Part No.: 84951036#

FiberConnect[®] A-V(ZN)11Y 4... TB900L

Profile view:

This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved. This specification is valid as of 08/26/13, however, the specification is subject to change at any time.

NOTE

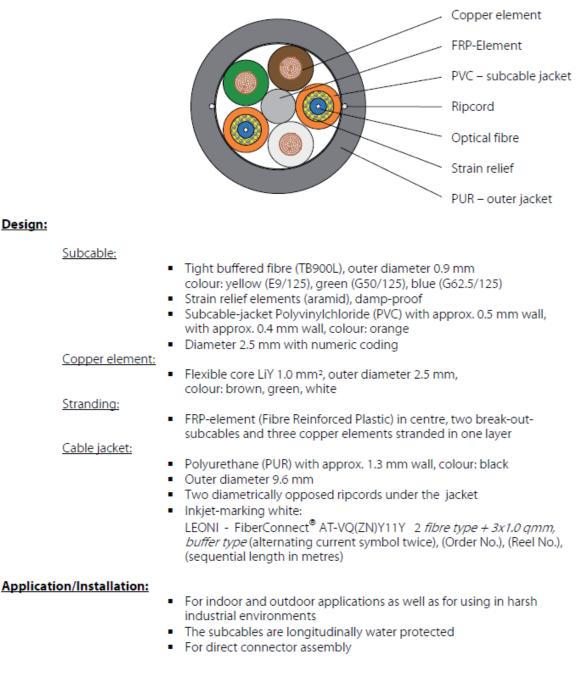
LEONI 4 FIBERS

LEONI

LEONI Part No.: 84951036#

Mechanical properties:		
	 Min. bending radius acc. to IEC 60794-1-2, method E11, procedure 1 static dynamic Max. tensile strength acc. to IEC 60794-1-2, method E1 short-term long-term Max. crush resistance acc. to IEC 60794-1-2, method E3 short-term long-term Impact resistance acc. to IEC 60794-1-2, method E4 Flexing test acc. IEC 60794-1-2 E8 Weight Drag chain test 	10 x outside diameter 15 x outside diameter max. 2500 N max. 1500 N max. 8000 N/dm max. 4000 N/dm 3 Impacts, 1.5 Nm (2000 cycles, D = 80 mm, F = 10 N, L (pulling path) = 1.5 m) approx. 28.0 kg/km 1 000 000 cycles
Thermal properties:	Transport and storageInstallationOperation	- 55 ℃ to + 85 ℃ - 20 ℃ to + 60 ℃ - 55 ℃ to + 85 ℃
Fire performance:	 Cable is flame-retardant Halogen-free Acidity of the combustion gases 	acc. to IEC 60332-1-2 acc. to IEC 60754-1 acc. to IEC 60754-2
Chemical properties:	 Resistance to oil, petrol, acid and leach UV - resistant 	
Standardisation:	 IEC 60 794-2 	

NOTE This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved. This specification is valid as of 08/26/13, however, the specification is subject to change at any time.


LEONI HYBRID 2-2

LEONI Part No.: 84951029#

FiberConnect[®] AT-VQ(ZN)Y11Y 2... + 3x1 mm²

Profile view:

NOTE This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved. This specification is valid as of 08/26/13, however, the specification is subject to change at any time.

LEONI HYBRID 2-2

LEONI Part No.: 84951029#

Transmission characteristics:

Transmission characteristics see separate fibre data-sheet

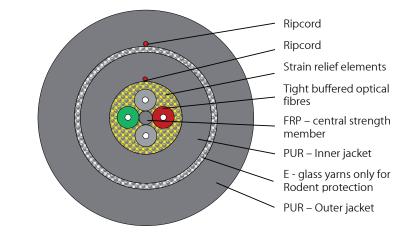
Mechanical characteristics:

	Min. bending radius static dynamic Max. crush resistance long term Max. pull force long term Weight	10 x outside diameter 15 x outside diameter 1500 N/dm 1200 N 100.7 kg/km
Thermal characteristics:		
•	Transport and storage	- 25 °C to + 80 °C
•	Installation	 5 °C to + 50 °C
•	In use	- 20 °C to + 80 °C
Chemical characteristics:		
	Good resistance to oil, petrol, acid and leach	

 UV-resistance of outer-jacket in according to DIN EN ISO 4892-2, Procedure A, UV-application 500 hours

Standardisation:

None


LEONI RODENT PROOF 2 FIBERS

LEONI Part No.: 84951135#

FiberConnect® A-V(ZN)11Y(ZN)B11Y 2 ... TB900L

Profile view / Querschnittszeichnung:

Design / Aufbau:

Cable core / Kabelseele:

Tight buffered fibre (E9/125), (G50/125) or (G62.5/125) bend insensitive, outer diameter 0.9 mm Festader (E9/125), (G50/125) oder (G62,5/125) biegeunempfindlich, Außendurchmesser 0,9 mm Core colours: red, grey (filler), green and grey (filler) Farbcode Adern: rot, grau (Blindelement), grün und grau (Blindelement)

Stranding / Verseilung:

Tight buffered fibres stranded around a central strength member (FRP). Festadern um zentrales Stützelement aus glasfaserverstärktem Kunststoff (GFK) verseilt. Strain relief elements (aramid) with additional compression relief elements Zugentlastungselemente (Aramid) mit zusätzlichen Druckentlastungselementen

Inner jacket / Innenmantel:

Polyurethane (TPE-U), wall thickness approx. 1.2 mm Outer diameter approx. 5.5 mm Colour: black, or according customer requirement Polyurethan (TPE-U), Nennwandstärke ca. 1,2 mm Außendurchmesser ca. 5,5 mm Farbe: Schwarz, oder nach Kundenwunsch One ripcord under the jacket Ein Reißfaden unter dem Mantel

NOTE This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved. This specification is valid as of 08/26/13, however, the specification is subject to change at any time.

LEONI RODENT PROOF 2 FIBERS

LEONI

LEONI Part No.: 84951135#

Armour / Bewehrung:

Multifunctional E-glass yarns, swellable, wrapped in two layers (left and right spin), not as strain relief elements, only as non-metallic rodent protection Multifunktionale Glasrovingumspinnung, feuchtigkeitssperrend, zweilagig (links und rechts Drall), nicht als Zugentlastungselemente, nur als nichtmetallischer Nagetierschutz

Outer jacket / Außenmantel:

Polyurethan (TPE-U), wall thickness approx. 1.5 mm Outer diameter approx. 9.4 mm Colour: black, or according customer requirement Polyurethan (TPE-U), Nennwandstärke ca. 1,5 mm Außendurchmesser ca. 9,4 mm Farbe: schwarz, oder nach Kundenanforderung One ripcord under the jacket Ein Reißfaden unter dem Mantel Inkjet-marking (white): Inkjet - Aufdruck (weiß): LEONI - FiberConnect® A-V(ZN)11Y(ZN)B11Y 2 fibre type TB900L (alternating current symbol twice), (Order No.), (Reel No.), (sequential length in metres) LEONI - FiberConnect® A-V(ZN)11Y(ZN)B11Y 2 Fasertyp TB900L (zweimal Wechselstromsymbol), (Auftragsnummer), (Trommelnummer), (Metermarkierung)

Application/Installation / Anwendung/Verlegung:

Flexible cable for moved application indoor and outdoor Flexibles Kabel für den bewegten Einsatz im Innen- und Außenbereich Indoor cable for the installation in cable ducts and in tubes and also suitable for interconnections in harsh industrial environments Innenkabel für ortsfeste Verlegung in Kabelkanälen und Rohren, sowie für Rangierzwecke in rauer Industrieumgebung Fiber optic cable with additional rodent proof LWL-Kabel mit zusätzlichem Nagetierschutz Good installation through ripcords to open the jackets Montagefreundlich durch Reißfäden zum Öffnen der Mäntel For direct connector assembly Für direkte Steckerkonfektion Ruggedized for industrial application, chemical resistance, abrasion resistance and crush resistance Widerstandsfähig, für raue Industrieanwendung, hinsichtlich Chemikalienbeständigkeit, Abriebfestigkeit und Querdruckfestigkeit Not suitable for underground laying (direct buried) Direkte Erdverlegung nicht zulässig

Transmission characteristics / Übertragungseigenschaften:

Transmission characteristics see separate fibre data-sheet Übertragungseigenschaften siehe gesondertes Faserdatenblatt

Mechanical characteristics / Mechanische Eigenschaften:

Min. bending radius fixed (static) with bend able robust fibre acc. IEC 60794-1-2 E11A Min. Biegeradius fest verlegt (statisch) mit biegeresistenter Faser nach IEC 60794-1-2 E11A 10 x outer diameter

LEONI RODENT PROOF 2 FIBERS

LEONI Part No.: 84951135#

Min. bending radius during assembly (dynamic), with additional tensile strain acc. IEC 60794-1-2 E6 Min. Biegeradius bei Montage (dynamisch), mit zusätzlicher Zugbelastung nach IEC 60794-1-2 E6 Max. tensile force acc. IEC 60794-1-2 E1, long term Max. Zugkraft nach IEC 60794-1-2 E1, langzeitig Max. tensile force acc. IEC 60794-1-2 E1, short term Max. Zugkraft nach IEC 60794-1-2 E1, kurzzeitig Max. crush resistance acc. IEC 60794-1-2 E3, long term Max. Querdruckfestigkeit nach IEC 60794-1-2 E3, langzeitig Max. crush resistance acc. IEC 60794-1-2 E3, short term Max. Querdruckfestigkeit nach IEC 60794-1-2 E3, kurzzeitig Impact resistance acc. IEC 60794-1-2 E4 Schlagfestigkeit nach IEC 60794-1-2 E4 Flexing test acc. IEC 60794-1-2 E8 Wechselbiegeprüfung nach IEC 60794-1-2 E8 Cable weight Kabelgewicht Drag chain test Schleppkettentest

Thermal characteristics / Thermische Eigenschaften:

- 55°C to + 85°C Transport and storage Transport und Lagerung Installation - 20°C to + 60°C Verlegung In use acc. IEC 60794-1-2 F1 - 55°C to + 85°C Im Betrieb nach IEC 60794-1-2 F1

Fire performance / Brandverhalten:

Cable is flame-retardant Flammwidrigkeit Halogen-free Halogenfreiheit Acidity of the combustion gases Azidität der Brandgase

Chemical characteristics / Chemische Eigenschaften:

Very good resistance to oil, petrol, acid and leach Sehr gute Beständigkeit gegen Öl, Fett, Säuren und Laugen UV-resistance of outer-jacket UV-Beständigkeit des Außenmantels

Standardisation / Normung:

IEC 60794-2

15 x outer diameter

2000 N

2500 N

4000 N/dm

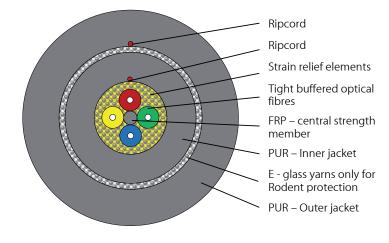
8000 N/dm

50 impacts, 2.0 Nm, R = 12.5 mm

(2000 cycles, D = 80 mm, F = 10 N, L (pulling path) = 1.5 m) approx. 105 kg/km

1 000 000 cycles

acc. to IEC 60332-1-2 acc. to IEC 60754-1 acc. to IEC 60754-2


LEONI RODENT PROOF 4 FIBERS

LEONI Part No.: 84951136#

FiberConnect® A-V(ZN)11Y(ZN)B11Y 4 ... TB900L

Profile view / Querschnittszeichnung:

Design / Aufbau:

Cable core / Kabelseele:

Tight buffered fibre (E9/125), (G50/125) or (G62.5/125) bend insensitive, outer diameter 0.9 mm Festader (E9/125), (G50/125) oder (G62,5/125) biegeunempfindlich, Außendurchmesser 0,9 mm Core colours: red, green, blue and yellow Farbcode Adem: rot, grün, blau und gelb

Stranding / Verseilung:

Tight buffered fibres stranded around a central strength member (FRP). Festadern um zentrales Stützelement aus glasfaserverstärktem Kunststoff (GFK) verseilt. Strain relief elements (aramid) with additional compression relief elements Zugentlastungselemente (Aramid) mit zusätzlichen Druckentlastungselementen

Inner jacket / Innenmantel:

Polyurethane (TPE-U), wall thickness approx. 1.2 mm Outer diameter approx. 5.5 mm Colour: black, or according customer requirement Polyurethan (TPE-U), Nennwandstärke ca. 1,2 mm Außendurchmesser ca. 5,5 mm Farbe: Schwarz, oder nach Kundenwunsch One ripcord under the jacket Ein Reißfaden unter dem Mantel

LEONI RODENT PROOF 4 FIBERS

LEONI

LEONI Part No.: 84951136#

Armour / Bewehrung:

Multifunctional E-glass yarns, swellable, wrapped in two layers (left and right spin), not as strain relief elements, only as non-metallic rodent protection Multifunktionale Glasrovingumspinnung, feuchtigkeitssperrend, zweilagig (links und rechts Drall), nicht als Zugentlastungselemente, nur als nichtmetallischer Nagetierschutz

Outer jacket / Außenmantel:

Polyurethan (TPE-U), wall thickness approx. 1.5 mm Outer diameter approx. 9.4 mm Colour: black, or according customer requirement Polyurethan (TPE-U), Nennwandstärke ca. 1,5 mm Außendurchmesser ca. 9,4 mm Farbe: schwarz, oder nach Kundenanforderung One ripcord under the jacket Ein Reißfaden unter dem Mantel Inkjet-marking (white): Inkjet - Aufdruck (weiß): LEONI - FiberConnect® A-V(ZN)11Y(ZN)B11Y 4 fibre type TB900L (alternating current symbol twice), (Order No.), (Reel No.), (sequential length in metres) LEONI - FiberConnect® A-V(ZN)11Y(ZN)B11Y 4 Fasertyp TB900L (zweimal Wechselstromsymbol), (Auftragsnummer), (Trommelnummer), (Metermarkierung)

Application/Installation / Anwendung/Verlegung:

Flexible cable for moved application indoor and outdoor Flexibles Kabel für den bewegten Einsatz im Innen- und Außenbereich Indoor cable for the installation in cable ducts and in tubes and also suitable for interconnections in harsh industrial environments Innenkabel für ortsfeste Verlegung in Kabelkanälen und Rohren, sowie für Rangierzwecke in rauer Industrieumgebung Fiber optic cable with additional rodent proof LWL-Kabel mit zusätzlichem Nagetierschutz Good installation through ripcords to open the jackets Montagefreundlich durch Reißfäden zum Öffnen der Mäntel For direct connector assembly Für direkte Steckerkonfektion Ruggedized for industrial application, chemical resistance, abrasion resistance and crush resistance Widerstandsfähig, für raue Industrieanwendung, hinsichtlich Chemikalienbeständigkeit, Abriebfestigkeit und Querdruckfestigkeit Not suitable for underground laying (direct buried) Direkte Erdverlegung nicht zulässig

Transmission characteristics / Übertragungseigenschaften:

Transmission characteristics see separate fibre data-sheet Übertragungseigenschaften siehe gesondertes Faserdatenblatt

Mechanical characteristics / Mechanische Eigenschaften:

Min. bending radius fixed (static) with bend able robust fibre acc. IEC 60794-1-2 E11A Min. Biegeradius fest verlegt (statisch) mit biegeresistenter Faser nach IEC 60794-1-2 E11A 10 x outer diameter

LEONI RODENT PROOF 4 FIBERS

LEONI Part No.: 84951136#

Min. bending radius during assembly (dynamic), with additional tensile strain acc. IEC 60794-1-2 E6 Min. Biegeradius bei Montage (dynamisch), mit zusätzlicher Zugbelastung nach IEC 60794-1-2 E6 Max. tensile force acc. IEC 60794-1-2 E1, long term Max. Zugkraft nach IEC 60794-1-2 E1, langzeitig Max. tensile force acc. IEC 60794-1-2 E1, short term Max. Zugkraft nach IEC 60794-1-2 E1, kurzzeitig Max. crush resistance acc. IEC 60794-1-2 E3, long term Max. Querdruckfestigkeit nach IEC 60794-1-2 E3, langzeitig Max. crush resistance acc. IEC 60794-1-2 E3, short term Max. Querdruckfestigkeit nach IEC 60794-1-2 E3, kurzzeitig Impact resistance acc. IEC 60794-1-2 E4 Schlagfestigkeit nach IEC 60794-1-2 E4 Flexing test acc. IEC 60794-1-2 E8 Wechselbiegeprüfung nach IEC 60794-1-2 E8 Cable weight Kabelgewicht Drag chain test Schleppkettentest

Thermal characteristics / Thermische Eigenschaften:

Transport and storage	- 55℃ to + 85℃
Transport und Lagerung Installation	- 20°C to + 60°C
Verlegung In use acc. IFC 60794-1-2 F1	- 55°C to + 85°C
In use acc. IEC 00794-1-2 F1 Im Betrieb nach IEC 60794-1-2 F1	- 55 C (0 + 65 C

Fire performance / Brandverhalten:

Cable is flame-retardant	acc. to IEC 60332-1
Flammwidrigkeit	
Halogen-free	acc. to IEC 60754-1
Halogenfreiheit	
Acidity of the combustion gases	acc. to IEC 60754-2
Azidität der Brandgase	

Chemical characteristics / Chemische Eigenschaften:

Very good resistance to oil, petrol, acid and leach Sehr gute Beständigkeit gegen Öl, Fett, Säuren und Laugen UV-resistance of outer-jacket UV-Beständigkeit des Außenmantels

Standardisation / Normung:

IEC 60794-2

15 x outer diameter

2000 N

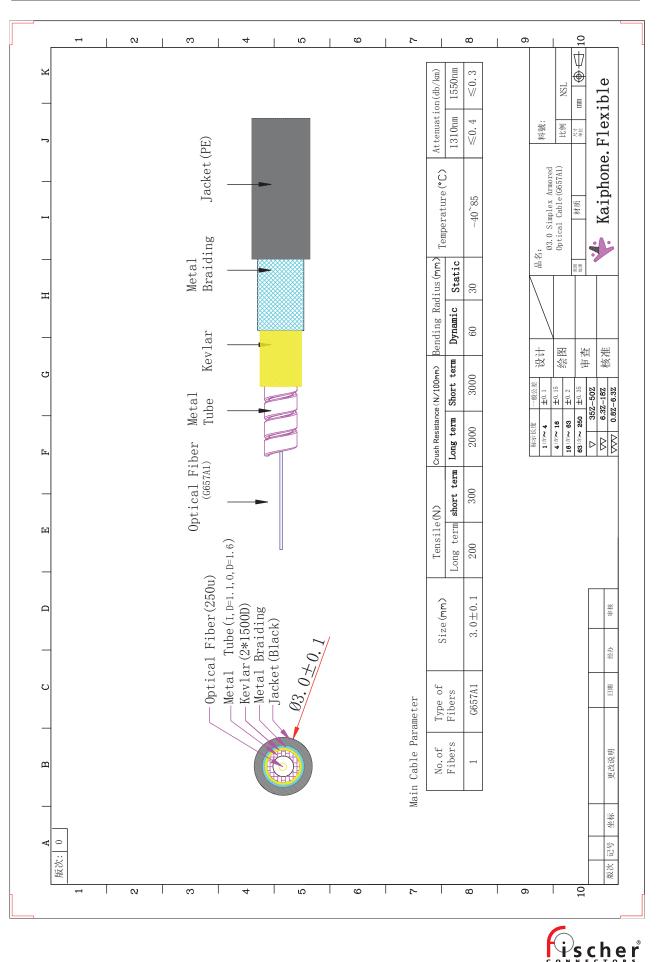
2500 N

4000 N/dm

8000 N/dm

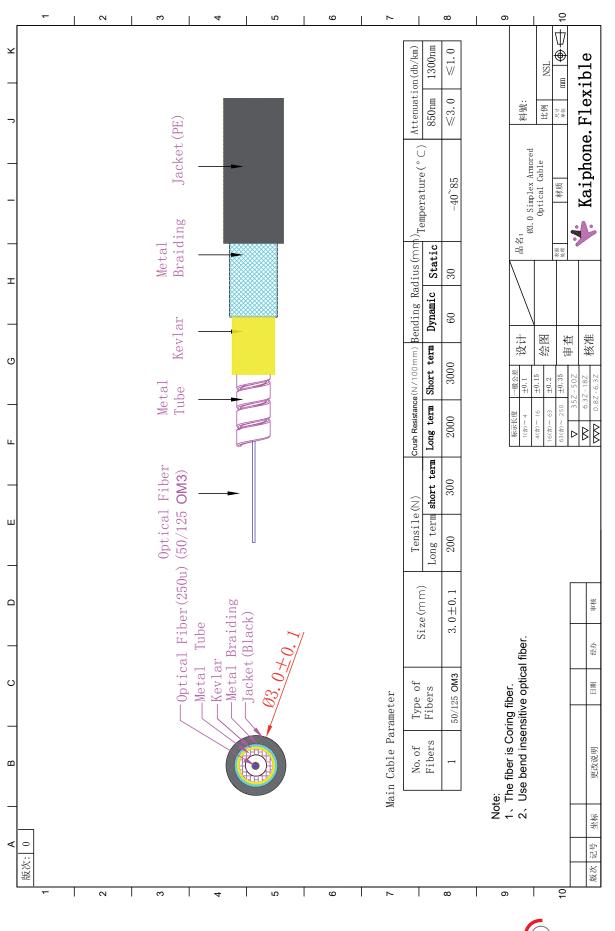
50 impacts, 2.0 Nm, R = 12.5 mm

(2000 cycles, D = 80 mm, F = 10 N, L (pulling path) = 1.5 m) approx. 105 kg/km

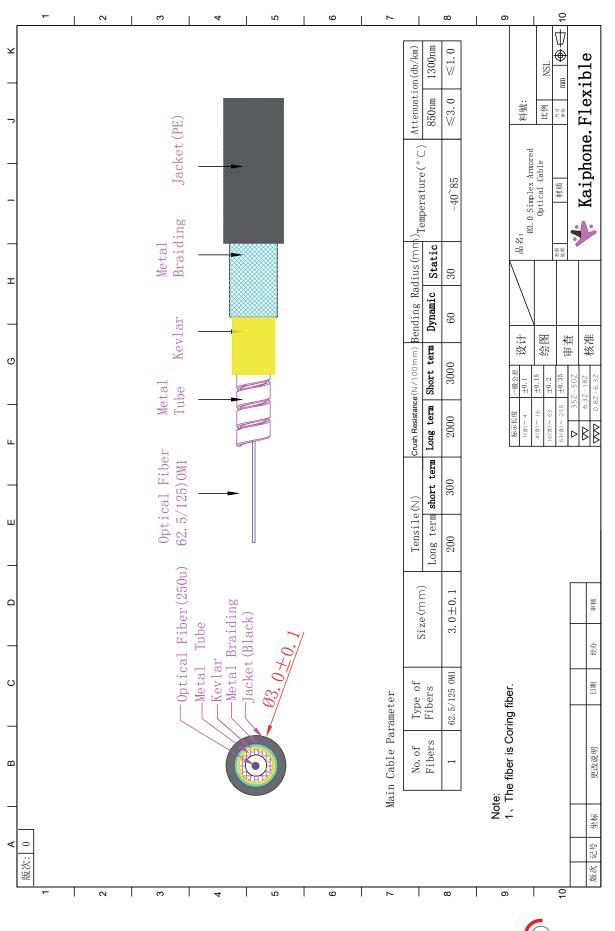

1 000 000 cycles

1-2 1 .)

NOTE This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved. This specification is valid as of 08/26/13, however, the specification is subject to change at any time.



KAIPHONE RODENT PROOF


KAIPHONE RODENT PROOF

KAIPHONE RODENT PROOF

BRUGG RODENT PROOF

Fibre Optic Metallic Cables / Ropes

BRUsteel

Flexible mini fibre optic cable - armoured, with stainless steel loose tubes with up to 8 fibres, metal strength members and outer sheath

Construction

- PA outer sheath
- Steel wires
- Gel-filled steel loose tube
- Fibres with primary coating

Description

- Central steel loose tube
- High permissible tensile strength
- High crush resistance
- Longitudinally and laterally watertight
- Excellent rodent protection
- Compact design, high flexibility
- Low weight
- Robust sheath
- Halogen-free cable sheathConnected with standard dead-ends and
- suspension fittings

Application

- Indoors, indoors and outdoors, outdoors
- Broadcast, FTTH and sensing applications
- Temporary applications
- Self-supporting applications

Temperature range

Operating temperature-40° ... +70°C Storage temperature-40° ... +70°C Installation temperature-5° ... +50°C

Jacket colour Blue similar to RAL 5005

Standards IEC 60794 Standards, see also data sheet 3_0_9

Remarks

Cable is available with different fibre types $2_{1}2x_x$ and $2_{1}3x_x$ Special labelling of outer sheath on request

- Accessories (on request):•
 - Pre-assembled cables with:
 - Standard ferrule connector
 - · Connector with IP protection class
 - Dead-ends
 - Repair kit
- Fibre and loose tube colour acc. to data sheet 3_0_3
- Instructions for installation and use see data sheet 3_6_0

Technical data

Туре	Max. no. of fibres units	Cable ø mm	Weight kg/km	Max. tensi short term N	le strength Iong term N
1F	1	3.4	18	1000	750
2F	2	3.8	25	1500	1100
4F	4	3.8	25	1300	900
8F	8	4.8	46	3500	2600

Туре	Min. bend	ing radius	Max. crush resistance		
	with tensile mm	without tensile mm	N/cm		
1F	20xD	15xD	2000		
2F	20xD	15xD	960		
4F	20xD	15xD	800		
8F	20xD	15xD	1000		

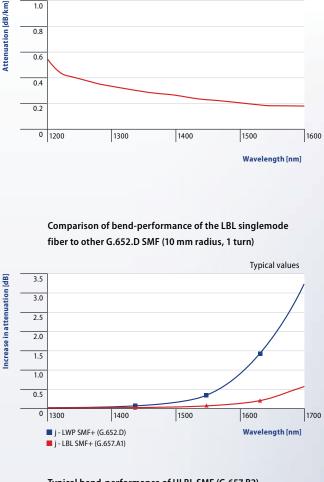
F S S C h e f

3_7_4

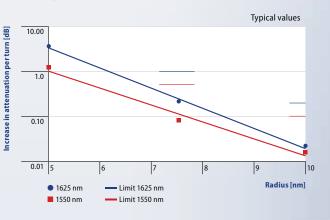
LLK-BST, patented

LEONI SINGLEMODE G.657.A1

Typical values


Reliable tried and tested singlemode fiber for LAN, FTTX and long distance applications

1.0


0.8

Coating Silica cladding Silica Core

Typical spectral attenuation for LWP SMF⁺

Typical bend-performance of ULBL SMF (G.657.B2)

Description

For the bridging of larger distances in LAN cabling as well as for FTTX applications we offer reliable high-performance singlemode fibers.

The G.657.A1 compliant fibers are compatible with installed networks and offer optimized bending properties. With lowest attenuation, perfect fiber geometry and tight fiber diameter tolerances, they are perfectly suited for the system demands in LAN networks.

In FTTX applications they meet the requirements for robust and cost-efficient fiber solutions with a future-proof perspective.

In long-distance applications our G.652.D singlemode fibers guarantee cost advantages and performance consistency as required for the transmission of high data rates over long distances.

NOTE

This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved. This specification is valid as of 08/26/13, however, the specification is subject to change at any time.

LEONI SINGLEMODE G.657.A1

	LWP SMF+ (ITU-T G.652 D)	LBL SMF (ITU-T G.657 A.1)	ULBL SMF (ITU-T G.657.B2)
	(10-1 0.052.0)		(110-1 (1.057.02)
1210	<0.22.45 ×0.25		-0.20
			≤0.38
			-
			≤ 0.25
			≤ 0.25
			-
			75.04
	,	-	7.5 ± 0.4
			-
1550 nm			-
	≤ 0.05	≤ 0.05	-
		1	1
1310 nm	≤ 0.05	-	-
1550 nm	≤ 0.05	-	-
1550 nm	≤0.05	-	-
		-	-
	-		≤ 0.03
	-		≤ 0.1
	-		≤ 0.1
	-	≤ 1.0	≤ 0.2
	-	-	≤ 0.5
1625 nm	-	-	≤ 1.0
	1200-1330	≤ 1340	-
	≤ 1260	≤ 1260	_
	$1300 \le \lambda_0 \le 1324$	$1300 \le \lambda_0 \le 1324$	-
	≤ 0.092	≤ 0.092	-
1270–1340 nm	≤ 5.00	≤ 5.00	-
1285–1330 nm	≤ 3.00	≤ 3.00	-
1550 nm	≤ 18.00	≤ 18.00	-
1310 nm	1.467	1.467	
1383 nm	1.467	1.467	-
1550 nm	1.467	1.467	
	≤0.06	≤ 0.06	_
	≤ 0.10	≤ 0.10	-
	1550 nm 1550 nm 1625 nm 1625 nm 1625 nm 1625 nm 1625 nm 1625 nm 1625 nm 1270–1340 nm 1285–1330 nm 1550 nm 1310 nm 1383 nm	(ITU-T G.652.D) 1310 nm ≤ 0.33 to ≤ 0.35 1383 nm ² ≤ 0.31 to ≤ 0.35 1550 nm ≤ 0.19 to ≤ 0.21 1625 nm ≤ 0.20 to ≤ 0.23 1285-1330 nm ≤ 0.02 to ≤ 0.23 1285-1330 nm ≤ 0.02 1530-1570 nm ≤ 0.02 1460-1625 nm ≤ 0.02 1460-1625 nm ≤ 0.04 1310 nm $9,2 \pm 0.4$ 1550 nm ≤ 0.05 1310 nm ≤ 0.05 1310 nm ≤ 0.05 1550 nm $= 0.05$ 1550 nm $= 0.05$ 1550 nm $= 1.625$ nm 1550 nm $= 1.625$ nm 1550 nm $= 1.625$ nm 1550 nm $= 1.260$ 150 nm $= 1.260$ 1300 $\leq \lambda_0 \leq 1324$ ≤ 0.092 1270-1340 nm ≤ 5.00 1285-1330 nm ≤ 3.00 1550 nm $\leq 1.8.00$ <t< td=""><td>(ITU-T G.652.D)(ITU-T G.657 A.1)Specific values1310 nm≤ 0.33 to $\leq 0.35$$\leq 0.33$ to $\leq 0.36$1383 nm²≤ 0.31 to $\leq 0.35$$\leq 0.31$ to $\leq 0.36$1550 nm≤ 0.19 to $\leq 0.21$$\leq 0.19$ to $\leq 0.21$1625 nm≤ 0.20 to $\leq 0.23$$\leq 0.20$ to $\leq 0.23$1285-1330 nm$\leq 0.03$$\leq 0.02$1300 nm$\leq 0.02$$\leq 0.02$1460-1625 nm$\leq 0.04$$\leq 0.04$1310 nm$9,2 \pm 0.4$$8,6 \pm 0.4$1550 nm$\leq 0.05$$\leq 0.05$1310 nm$\leq 0.05$$\leq 0.05$1310 nm$\leq 0.05$$\leq 0.05$1550 nm$\leq 0.05$$\leq 0.05$1550 nm$\leq 0.05$$-$1550 nm$\leq 0.05$$-$1550 nm$\leq 0.05$$-$1550 nm$\leq 0.05$$-$1550 nm$<$1550 nm$<$1550 nm$<$1550 nm$<$1550 nm$<$1550 nm$-$1550 nm$<$1625 nm$<$1625 nm$-$1625 nm$-$1200-1330$\leq 1340$$\leq 1260$$\leq 1260$1300 $\leq \lambda_0 \leq 1324$$1300 \leq \lambda_0 \leq 1324$1200-1330$\leq 1340$$\leq 1260$$\leq 1260$1300 $\leq \lambda_0 \leq 1324$$1300 \leq \lambda_0 \leq 1324$1270-1340 nm$\leq 5.00$1287-1330 nm$\leq 18.00$<</td></t<>	(ITU-T G.652.D)(ITU-T G.657 A.1)Specific values1310 nm ≤ 0.33 to ≤ 0.35 ≤ 0.33 to ≤ 0.36 1383 nm ² ≤ 0.31 to ≤ 0.35 ≤ 0.31 to ≤ 0.36 1550 nm ≤ 0.19 to ≤ 0.21 ≤ 0.19 to ≤ 0.21 1625 nm ≤ 0.20 to ≤ 0.23 ≤ 0.20 to ≤ 0.23 1285-1330 nm ≤ 0.03 ≤ 0.02 1300 nm ≤ 0.02 ≤ 0.02 1460-1625 nm ≤ 0.04 ≤ 0.04 1310 nm $9,2 \pm 0.4$ $8,6 \pm 0.4$ 1550 nm ≤ 0.05 ≤ 0.05 1310 nm ≤ 0.05 ≤ 0.05 1310 nm ≤ 0.05 ≤ 0.05 1550 nm ≤ 0.05 ≤ 0.05 1550 nm ≤ 0.05 $-$ 1550 nm $ <$ 1550 nm $ -$ 1550 nm $ <$ 1625 nm $ <$ 1625 nm $ -$ 1625 nm $ -$ 1200-1330 ≤ 1340 ≤ 1260 ≤ 1260 1300 $\leq \lambda_0 \leq 1324$ $1300 \leq \lambda_0 \leq 1324$ 1200-1330 ≤ 1340 ≤ 1260 ≤ 1260 1300 $\leq \lambda_0 \leq 1324$ $1300 \leq \lambda_0 \leq 1324$ 1270-1340 nm ≤ 5.00 1287-1330 nm ≤ 18.00 <

Mechanical properties		Specified values			
	[kpsi]	≥ 100			
Proof test	[N]	≥8.8			
	[GPa]	≥0.7			
Dynamic tensile strength in an	Median tensile strength	≥3.8			
unaged fiber (0.5 m) [GPa]	Tensile strength 15 %	≥3.3			
Dynamic tensile strength in an	Median tensile strength	≥ 3.03			
aged fiber (0.5 m) [GPa]	Tensile strength 15 %	≥2.76			
Dynamic fatigue	Stress-corrosion parameter n _d	≥20			
Operating temperature [°C]		-60 to +85			
Average coating strip force (typ.)	[N]	1.9			

¹⁾ Special attenuation cells on request.

²⁾ Attenuation values for 1383 nm represent values after hydrogen charging and are always lower or equal to the attenuation value for 1310 nm.

³⁾ Fiber attenuation in specified areas exceeds the nominal values at 1310/1550 nm no more than the declared value. ⁴⁾ M = 20, Q = 0.01 %

⁵⁾ Individual values can change during the cabling.

NOTE

This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved.

This specification is valid as of 08/26/13, however, the specification is subject to change at any time.

LEONI MULTIMODE 50µm OM3

					Industrial standards							
50/125 µm j-BendAble/OptiGrad	le/GigaGrade	fit	Multin Der speci		s	Test methods	IEC 60793-2-10	ISO/IEC 11801	ITU G651.1	TIA/EIA 492AAD OM4	TIA/EIA 492AAAC-B OM3	TIA/EIA 492AAAB-A OM2
D (1										
Performance properti			< 2.2 to	-24			2.4 to 3.5 (A1a.1)	≤ 3.5	≤ 3.5	≤ 2.5	<25	≤ 3.0
	at 850 nm		≤ 2.2 to			FOTP 78	2.5 (A1a.2) 0.7 to 1.5 (A1a.1)	(cabled) ≤ 1.5	(cabled) ≤1		≤2.5	
Attenuation [dB/KM]	at 1300 nm at 1385 nm		≤ 0.6 t	o 0.7		IEC 60793-1-40	0.8 (A1a.2)	(cabled)	(cabled)	≤ 0.8	≤ 0.8	≤ 1.0
	(OH peak)		< 2.	.0			_	-	-	≤ 3.0	≤ 3.0	≤ 3.0
	at 850 nm		≤ 0.	.1		FOTP 78	_	-	-	≤ 0.2	≤ 0.2	≤ 0.2
Discontinuity [dB]	at 1300 nm	≤0.1		IEC 60793-1-40		-	-	≤ 0.2	≤ 0.2	≤ 0.2		
Bend-induced attenu	ation [dB] for Optio	Grade/Gig	JaGrade									
100 turns	at 850/		≤0.	.5		FOTP 62	≤0.5	_	_	_	_	_
Radius 37.5 mm	37.5 mm 1300 nm			IEC 60793-1-47								
Bend-induced attenu	ation [dB] for j-Ben	dable										
100 turns	at 850 nm		≤0.0			-	≤ 0.5	-	-	-	-	_
Radius 37.5 mm	at 1300 nm at 850 nm		≤0.			FOTD (2	≤0.5		<1	_		
2 turns Radius 15 mm	at 1300 nm	≤ 0.1 ≤ 0.3		FOTP 62 IEC 60793-1-47		_	<1	_	_	_		
2 turns	at 850 nm		≤ 0.				_	_	_	_	_	_
Radius 7.5 mm	at 1300 nm		≤0.			-	_	-	-	-	-	_
Modal bandwidth [MI	Hz×km]	OM2	OM2+	OM3	OM4	1						
		Giga-		ptiGrade		-						
	1	Grade	j-	Bendab	le			≥ 200 (OM1)				
OFL	at 850 nm	≥ 500 to 600	≥750	≥ 1500	≥ 3500	FOTP 204 IEC 60793-1-41	200 to 800 (A1a.1) 1500 (A1a.2)	≥ 200 (OM1) ≥ 500 (OM2) ≥ 1500 (OM3) ≥ 3500 (OM4)	≥ 500	≥ 3500	≥ 1500	≥ 500
OFL	at 1300 nm	≥ 500 to 1200	≥ 500	≥ 500	≥ 500		500	≥ 500 (OM1/2/3/4)	≥ 500	≥ 500	≥ 500	≥500
ЕМВ	at 850 nm	-	≥ 1000	≥2000	≥ 4700	FOTP 220 IEC 60793-1-49	≥2000 (A1a.2)	≥ 2000 (OM3)		≥ 4700	≥ 2000	
		550 to	1	1				1	1	1	1	
Transmission link length 1 Gb/s [m]	at 850 nm	750 550 to	750	1000	1100	—	_	_	_	_	_	—
	at 1300 nm	2000	550	550	550	—	_	—	—	-	-	_
Transmission link	at 850 nm	n.a.	150	300	550	_	_	-	-	-	-	_
length 10 Gb/s [m]	at 1300 nm	n.a.	300	300	300	-		-	-	-	-	_
Chromatic dispersion			1295≤λ₀	< 1340			1295≤λ₀≤ 1340	_	1295< X < 1340	1295< X < 1340	1295≤λ₀≤1340	1295< A.< 1340
Slope at zero crossing of			1275370	3 1340		FOTP 175	127537031540		127537031540	120037031040	127537031540	129537031540
Slope at zero crossing [ps/(nm ² ×km)]	of dispersion – So					IEC 60793-1-32						
from 1295 $\leq \lambda_0 \leq$ 1310			≤ 1.1				≤ 1.105	_			.105	
from $1310 \le \lambda_0 \le 1340$		≤0	.000375>	<(1590-λ	. ₀)		≤0.000375×(1590-λ₀)			≤ 0.000375	\times (1590- λ_{0})	
Geometrical propertio	25	1										
Core Ø [µm]			50 ±	2.5			50 ±2.5	50 ±2.5	50 ±3.0	50 ±2.5	50 ±2.5	50 ±3.0
Cladding Ø [µm]			125 ±			1	125 ±2.0	125 ±2.0	125 ±2.0	125 ±2.0	125 ±2.0	125 ±2.0
Cladding non-circular	rity [%]		≤ 1.			FOTP 176	≤ 2.0	≤ 2.0	≤ 2.0	≤ 2.0	≤ 2.0	≤ 2.0
Core non-circularity [≤ 5			IEC 60793-1-20	≤6	≤6	≤6	≤6	≤6	≤6
Core/cladding concer	tricity error [µm]		≤ 1.	.5			≤ 3.0	≤ 3.0	≤ 3.0	≤ 3.0	≤ 3.0	≤ 3.0
Coating Ø [µm]			242 :	±7		FOTP 176 IEC 60793-1-20	245 ±10	245 ±10	245 ±10	245 ±10	245 ±10	245 ±10
Numerical aperture			0.200±	0.015		FOTP 177 IEC 60793-1-43	0.200 ±0.015	0.200 ±0.015	0.200 ±0.015	0.200 ±0.015	0.200 ±0.015	0.200 ±0.015
	-BendAble/ OptiGrade		1.1 to	8.8		Calibrated Winder		_	_	min. 1.1	min. 1.1	min. 1.1
	GigaGrade 50/125		1.1 to	17.6		IEC 60793-1-22						
j	-BendAble		≥ 200 (FOTO AL						
Proof test [GPa]	OptiGrade/		≥ 1.38 (kpsi)		FOTP 31 IEC 60793-1-30	≥0.69	-	≥0.69	≥ 0.69	≥0.69	≥0.69
	GigaGrade		≥0.69			FOT0 170	10.5			10	10 0.0	10
	peak value		1.0 ≤ x			FOTP 178 IEC 60793-1-32	$1.0 \le x \le 8.9$	_	_	1.0 ≤ x ≤ 9.0	1.0 ≤ x ≤ 9.0	1.0 ≤ x ≤ 9.0
subjoice [M]	average value		1.0 ≤ x	≥ 0.U		120 007 93-1-32	$1.0 \le x \le 5.0$				-	

NOTE

This cable specification is courtesy of Leoni Fiber Optics GmbH. All rights reserved. This specification is valid as of 08/26/13, however, the specification is subject to change at any time. www.leoni-fiber-optics.com

LEONI MULTIMODE 62.5µm OM1

62.5/125 μm GigaGrade	1	Multimode fiber specifications	Test methods	IEC 60793-2-10 A1b	ISO/IEC 11801	TIA/EIA 492AAAA-A (OM1
Performance propert	ies					
	at 850 nm	≤ 2.7 to ≤ 2.9		2.8 to 3.5	≤ 3.5 (cabled)	-
Attenuation [dB/KM]	at 1300 nm	≤ 0.6 to 0.7	FOTP 78	0.7 to 1.5	≤ 1.5 (cabled)	—
Attenuation [ub/ kin]	at 1385 nm	< 2.0	IEC 60793-1-40	_		_
	(OH peak)	< 2.0		_	_	_
			- 1 - 1			
Discontinuity [dB]	at 850 nm	≤ 0.1	FOTP 78	-	_	≤0.2
	at 1300 nm	≤ 0.1	IEC 60793-1-40	-	-	≤0.2
Modal bandwidth [M OFL	Hz×km] at 850 nm	≥ 200 to 300	FOTP 78	100 to 800	≥ 200 (OM1)	≥ 200
OFL	at 1300 nm	≥ 200 to 300 ≥ 500 to 1000	IEC 60793-1-41	200 to 1000	≥ 200 (OMT) ≥ 500	≥ 200
OFL	at 1300 nm	≥ 500 to 1000	IEC 00/93-1-41	200 to 1000	≥ 500	≥ 500
Transmission link	at 850 nm	300		_	_	
length 1 Gb/s [m]	at 1300 nm	500		_		
	at 1500 mm	500	1	_		
Chromatic dispersion						
Zero crossing of dispersion $-\lambda_0$ [nm]		1320≤λ₀≤1365		1320≤λ₀≤1365	-	1320≤ λ₀≤ 1365
Slope at zero crossing			FOTP 175			
[ps/(nm ² ×km)]			IEC 60793-1-32			
from $1320 \le \lambda_0 \le 1345$		≤ 0.11		≤ 0.11	_	≤ 0.11
from 1345 ≤ λ₀ ≤ 1365		≤ 0.001×(1458-λ₀)		$\leq 0.001 \times (1458 - \lambda_0)$		≤ 0.001×(1458-λ₀)
Geometrical properti	es					
Core Ø [µm]		62.5 ±2.5		62.5 ±3.0	62.5 ±3.0	62.5 ±3.0
Cladding Ø [µm]		125 ±1.0	FOTP 176	125 ±2.0	125 ±2.0	125 ±2.0
Cladding non-circula		≤ 1.0	IEC 60793-1-20	≤ 2.0	≤2.0	≤ 2.0
Core non-circularity		≤ 5	_	≤6	≤6	≤6
Core/cladding concer	ntricity error [µm]	≤ 1.5	5070 433	≤3.0	≤ 3.0	≤ 3.0
Numerical aperture		0.275 ± 0.015	FOTP 177 IEC 60793-1-43	0.275 ±0.015	0.275 ±0.015	0.275 ±0.015
	GigaGrade 62.5/125	1.1 to 17.6	Calibrated Winder IEC 60793-1-22	_	-	min. 1.1
	GigaGrade	≥ 100 (kpsi)	FOTP 31	≥ 0.69	_	≥ 0.69
	62.5/125	≥ 0.69 (GPa)	IEC 60793-1-30			4.0.07
	peak value	1.0 ≤ x ≤ 8.9	FOTP 178	1.0 ≤ x ≤ 8.9	_	1.0 ≤ x ≤ 9.0
strip force [N]	average value	1.0 ≤ x ≤ 5.0	IEC 60793-1-32	$1.0 \le x \le 5.0$	—	—

E0/12E 62 E/12E um					Industrial	standards				
50/125 62.5/125 μm j-BendAble/OptiGrade/ GigaGrade 50/GigaGrade 62.5	Multimode fiber specifications	Test methods	IEC 60793-2-10	ISO/IEC 11801	TIA/EIA 492AAD OM4	TIA/EIA 492AAAC-B OM3	TIA/EIA 492AAAB–A OM3	TIA/EIA 492AAAA–A OM1		
Change of attenuation in environmental test [dB/km] at 850 nm and 1300 nm										
Damp heat attenaution increase 30 days at 85 °C/85 % R.H.		FOTP 72 IEC 60793-1-50								
Dry heat attenuation increase 30 days at 85 °C	1	FOTP 72 IEC 60793-1-51	.0.20	_	≤0.20	≤0.20	≤0.20	≤ 0.20		
Change of temperature attenuation increase from –60 °C to +85 °C	≤ 0.10	FOTP 72 IEC 60793-1-52	≤0.20							
Water immersion attenuation increase, 30 days, 23 °C	1	FOTP 72 IEC 60793-1-53								

BRUGG SINGLEMODE G.657.A1

Optical Single Mode Fibres

Fibre, single-mode - bend optimized 2_1_21

According to ITU-T G.657 A1

Construction

- Step index glass/glass optical fiber
- Primary coating with polyacrylate

Description

• The attenuation at 1383 nm is equal to the value at 1310 nm.

Standards

These fibers are compatible with fibers corresponding to ITU-T G.652 \mbox{D}

On request other bend optimized fibers are available

Remarks

Available on request

Optical data (cabled)

Туре	Attenuation dB/km 1310 nm	Attenuation dB/km 1550 nm	Chromatic dis- persion ps/(nm x km) 1310 nm	Chromatic dis- persion ps/(nm x km) 1550 nm	Zero dispersion wavelength nm	Cut-off wave- length nm	PMD ps/√km
FSB	≤0.36	≤0.25	≤3.5	≤18	13041324	≤1260	≤0.2

Geometric values

Туре	Mode field ø μm 1310 nm	Mode field ø μm 1550 nm	Cladding Ø µm	Primary coating ø µm	Mode field non- circularity %	Cladding non- circularity %	MFD/cladding/- concentricity µm
FSB	8.6±0.4	9.8±0.5	125±1	245±10	≤6	≤2	≤0.8

BRUGG MULTIMODE 50µm OM1

Optical Multi Mode Fibres

Fibre, multi-mode - application

Optimised for 10 Gigabit Ethernet application

Construction

- Graded index glass/glass optical fibre
- Primary coating with polyacrylate

Optical data (cabled)

Туре	Attenuation dB/km 850 nm	Attenuation dB/km 1300 nm	Bandwidth/- length product MHz x km (OFL) 850 nm	Bandwidth/- length product MHz x km (OFL) 1300 nm	Bandwidth/- length product MHz x km (LA- SER) 850 nm	Numeric aper- ture	DMD character- istics
FG5M - OM3	≤2.7	≤0.9	≥1500	≥500	≥2000	0.200±0.02	TIA-492 AAAC
FG5N - OM4	≤2.7	≤0.9	≥3500	≥500	≥4700	0.200±0.02	TIA-492AAAD

Geometric values

Туре	Core Ø	Cladding Ø	Primary coating ø	Core non-circularity	Cladding non-circu- larity	Core/sheath con- centricity
	μm	μm	μm	%	%	μm
 FG5M - OM3	50±2.5	125±2.0	245±10	≤6	≤1	≤1.5
FG5N - OM4	50±2.5	125±1.0	245±10	≤5	≤1	≤1.5

These values correspond to following standards

Туре	ITU-T G.651 (50/125µm)	DIN VDE 0888	EN 50173	ISO / IEC 11801	IEC 60793	IEEE 802.3ae						
FG5M - OM3	х	х	х	х	х	х						
FG5N - OM4	Х	Х	Х	Х	Х	Х						

NOTE This cable specification is courtesy of Brugg Cables. All rights reserved.

LEONI MULTIMODE 62.5µm OM3

Optical Multi Mode Fibres

Fibre, multi-mode - standard

For standard LAN applications

Construction

- Graded index glass/glass optical fiber
- Primary coating with polyacrylate

Optical data (cabled)

Туре	Attenuation dB/km 850 nm	Attenuation dB/km 1300 nm	Bandwidth/length prod- uct MHz x km (OFL) 850 nm	Bandwidth/length prod- uct MHz x km (OFL) 1300 nm	Numeric aperture
FG5 - OM2	≤2.7	≤0.8	≥500	≥800	0.200±0.02
FG5F - OM2	≤2.5	≤0.7	≥600	≥1200	0.200±0.02
FG6 - OM1	≤3.5	≤1.0	≥200	≥500	0.275±0.02
FG6A - OM1	≤3.0	≤0.8	≥250	≥800	0.275±0.02

Geometric values

	Туре	Core Ø µm	Cladding Ø µm	Primary coating ø µm	Core non-circular- ity %	Cladding non-cir- cularity %	Core/sheath con- centricity µm
	FG5 - OM2	50±3	125±2	250±15	≤6	≤2	≤1.5
	FG5F - OM2	50±3	125±2	250±15	≤6	≤2	≤1.5
-	FG6 - OM1	62.5±3	125±2	250±15	≤6	≤2	≤1.5
	FG6A - OM1	62.5±3	125±2	250±15	≤6	≤2	≤1.5

These values correspond to following standards

Туре	ITU-T G.651 (50/125µm)	DIN VDE 0888	EN 50173	ISO / IEC 11801	IEC 60793
FG5 - OM2	Х	Х	Х	Х	Х
FG5F - OM2	Х	Х	Х	Х	Х
 FG6 - OM1			Х	Х	Х
FG6A - OM1			Х	Х	Х

NOTE This cable specification is courtesy of Brugg Cables. All rights reserved.

Headquarters

FISCHER CONNECTORS SA Ch. du Glapin 20 1162 Saint-Prex - Switzerland Phone +41 21 800 95 95 Free phone +41 800 800 008 mail@fischerconnectors.chw

United States & Canada

FISCHER CONNECTORS, Inc. Atlanta, GA Phone +1 678 393 5400 **Toll free : 800 551 0121** www.fischerconnectors.com/us mail@fischerconnectors.com

France

FISCHER CONNECTORS Sarl Paris Phone +33 1 5578 2578 **Appel gratuit : 0 800 590 444** www.fischerconnectors.fr mail@fischerconnectors.fr

Germany, Austria & Eastern Europe FISCHER CONNECTORS GmbH Zorneding Phone +49 8106 37722 0 Gebührenfrei : 0 800 233 3233

www.fischerconnectors.de mail@fischerconnectors.de

Italy FISCHER CONNECTORS SrI Monza Phone +39 039 734 072 www.fischerconnectors.it mail@fischerconnectors.it

Sweden

FISCHER CONNECTORS AB Nacka Phone +46 72 387 02 04 www.fischerconnectors.com mail@fischerconnectors.se United Kingdom & Ireland FISCHER CONNECTORS Ltd. Waterlooville, Hampshire Phone +44 23 9245 9600 Toll free: 0 800 432 0301 www.fischerconnectors.co.uk sales@fischerconnectors.co.uk

India

FISCHER CONNECTORS India Pvt. Ltd. Gurgaon - Haryana Phone +91 124 4255642 to 45 www.fischerconnectors.com salesin@fischerconnectors.in

Asia

FISCHER CONNECTORS ASIA Ltd. Hong Kong Phone +852 2620 6118 www.fischerconnectors.hk mail@fischerconnectors.hk

